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Nonlinearity effects in the kicked oscillator
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The quantum kicked oscillator is known to display a remarkable richness of dynamical behavior, from
ballistic spreading to dynamical localization. Here we investigate the effects of a Gross-Pitaevskii nonlinearity
on quantum motion, and provide evidence that the qualitative features depend strongly on the parameters of the
system.
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The dynamical behavior of quantized area-preserv
maps has proven to be one of the most relevant fields in
discipline of quantum chaos~see@1#!; in particular, the dis-
covery of quantum dynamical localization@2#, namely, the
quantal suppression of classical deterministic diffusion,
provoked a vast amount of theoretical and experime
work. The paradigmatic example in this field is the quant
kicked rotator~see@3#!, obtained upon quantization of th
classical standard map@4#. From a classical point of view the
system is of Kolmogorov-Arnold-Moser~KAM ! nature: for
small values of the stochasticity parameter global transpo
inhibited by invariant curves: once the last invariant torus
destroyed, transport properties abruptly change and, in t
cal situations of strong chaos, there is a diffusive spread
in momentum@4,5#, which characterizes also the quantu
motion for times shorter than the break timetb , where the
quantum localization regime sets in and the moment
spreading is suppressed@6#. We remark that this picture is
valid for genericvalues of the effective Planck’s constan
quantum resonant motion, characterized by ballistic spre
ing, appears when\ assumes rational values@2,8#.

Another example of a quantum system originating from
two-dimensional area-preserving map is the kicked harmo
oscillator ~see@9–11# and references therein!: the classical
Hamiltonian is

H~p,x,t !5
1

2m0
p21

m0

2
v0

2x21« cos~k0x!dT0
~ t !, ~1!

where the time dependence is through the periodicd function

dT0
~ t !5 (

m52`

`

d~ t2T0m!.

By rescaling the variablesx̃5k0x and t̃ 5v0t we realize that
the dynamics is dependent only on the parameters

K5
«k0

2

m0v0
, T5T0v0 . ~2!
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In particular, theresonantcase (T52pp/q) is characterized
by the presence of a stochastic web~for arbitrarily small
values ofK) supporting unbounded transport@12,13#, while
in the nonresonant case a thresholdK(E0) exists below
which unbounded transport is not sustained@14#.

The kicked harmonic oscillator has been proposed a
model of different physical phenomena from electron
transport in semiconductor superlattices@15# to ion traps
@16#. In the latter case the harmonic potential is represen
tive of the ion trap, while the kicking term arises from a tim
periodic standing wave laser field. Obviously, such examp
require a proper quantum mechanical treatment of
Hamiltonian~1!, the corresponding Schro¨dinger equation be-
ing ~once expressed in the dimensionless variablest̃ 5v0t

and x̃5Am0v0 /\x)

i
]

] t̃
c5S 2

1

2

]2

] x̃2
1

1

2
x̃21s cos~j x̃!dT~ t̃ !D c ~3!

so that the quantum dynamics depends upon three pa
eters,

s5
«

\
, j5k0A \

m0v0
, T5T0v0 . ~4!

Once again, the behavior is quite sensitive to number th
retic properties ofT: in particular, thecrystal cases@10# T
52p/q with qP$1,2,3,4,6% admit a one-parameter group o
commuting generalized translations commuting with t
Hamiltonian ~exceptional parameter values@10# may also
lead to two-parameter groups!; the corresponding dynamica
behavior is diffusive~or ballistic in the exceptional cases!.
We remark that theq54 case corresponds to the~symmet-
ric! kicked Harper model@17#. Outside resonant paramete
values there are indications of a localization-delocalizat
transition for resonant noncrystal cases@11#, while the simu-
lations reported in@10# for nonresonant cases suggest d
namical localization@18# ~however, we observed a deloca
ization transition in the irrational case, too!.

Recently, it has been suggested@19# that the widespread
interest and experimental activity in Bose-Einstein cond
sation@20# ~see also recent experiments with condensate
©2002 The American Physical Society03-1
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weakly chaotic settings@21#! makes it natural to study th
effect on Gross-Pitaevskii nonlinearities@22# in the kicked
oscillator ~thus turning it into a model of a trapped conde
sate under a laser field in the spirit of@16#!. The Gross-
Pitaevskii nonlinear correction to the Schro¨dinger equation is
of the form uucu2c, where the coefficientu is of the same
sign as the scattering length@23# ~we will deal mainly with a
positiveu in what follows!. Using the same rescaling in d
mensionless variables mentioned in the quantum case
equation reads

i
]

] t̃
c5S 2

1

2

]

] x̃2
1

1

2
x̃21s cos~j x̃!dT~ t̃ !1vucu2D c,

~5!

where now

v5
u

\
A m0

\v0
. ~6!

Even if the cubic nonlinearity acts like an effectiverepulsive
potential, the main observation in@19#, as regards the dy
namical effect of the Gross-Pitaevskii~GP! nonlinearity in
the crystalq56 case, was its tendency to oppose quant
spreading; it was suggested that this is due to a breaku
quantum symmetries for nonzero nonlinearity. Before p
senting the results of our simulations we have to ment
that nonlinearity effects were also considered a few ye
ago for the kicked rotator@24,25# ~for a cubic nonlinearity of
opposite sign!. Here the scenario is quite different. When t
nonlinearity is absent the system exhibits quantum dyna
cal localization: a sufficiently strong nonlinearity may th
induce chaotic transitions between localized modes, lead
to ~subdiffusive! delocalization.

To investigate the effect of the nonlinearity, we studi
Eq. ~5! in two different regimes: a crystal (q54) case, and
an irrational case@T5p/(A511)#. The evolution of the
kicked oscillator is conveniently studied by using a d
cretized propagator@10#

c~x8,t8!5E dxG~x8,x;t8!c~x,0! ~7!

where

FIG. 1. Classical transport along the stochastic web.
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G~x8,x;t !5C expH im0v0

2\sin~v0t !

3[(x21x82)cos(v0t)22xx8] J , ~8!

and once the discretized positionsxi5( i 2N/2)Dx are intro-
duced we have that the propagatorG is unitary if we put

Dx5S 2p\sin~v0t !

m0v0N D 1/2

. ~9!

In the coordinate representation the action of kicks is mu
plicative on the wave function.

Simulation of quantum evolution is considerably mo
complicated once we introduce a nonzero nonlinearity:
propagate the wave function between kicks we separate
time independent part of the Hamiltonian into the oscilla
and the nonlinear part, and use the lowest order split met
@26# ~this typically requires using ten time steps betwe
consecutive kicks in order to get stable results!. As an initial
state we consider the ground state of the GP equation~with-
out kicks! shifted into the chaotic region nearest to the o
gin. The ground states for different values of the nonlinea
parameter are obtained by evolving an eigenstate of

FIG. 2. Quantum transport (q54 one-parameter symmetr
group!. See the text for details.

FIG. 3. P2(t), for u510.5 andu520.5, and the same condi
tions as in Fig. 2.
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quantum harmonic oscillator under the imaginary tim
Gross-Pitaevskii equation@27#.

The first case we take into account is acrystal q54 ex-
ample. In Fig. 1 we show the classical phase picture, ex
iting unbounded transport along the stochastic web. We
T5p/2 ~andv0 fixed in such a way that generalized tran
lations form a one-parameter group of symmetries! and e
50.7 ~all other linear quantum parameters are fixed by t
ing \51 and j5A2; we will adopt this choice for othe
examples, too!.

This case is characterized by a one-parameter grou
symmetries~generalized phase space translations! and thus
the quantum case is expected@10# to exhibit a diffusive mo-
mentum spreading~the evolution corresponds to the upp
line in Fig. 2!. The effect of nonlinearity is considered b
taking u50.5, 1, 2.5, and 5; the corresponding curves
shown in Fig. 2. Such simulations are performed by using
N5214 discretization of the position variable~which has
been checked to provide a reliable choice up to the con
ered evolution time, by comparing the results with a simu
tion with twice the number of points!. To smooth out oscil-
lations in the evolving patterns we plot the integrated sec
moment

P2~ t !5
1

t (
k50

t21

^~pk2p0!2&. ~10!

The qualitative features confirm the observation in@19#,
namely, that the most striking effect of the nonlinearity is
oppose quantum delocalization. This has been claimed t
due to symmetry breaking effects of the nonlinearity, inh
iting transport along delocalized Floquet states. We rem
that at a classical level also related features have been
served; if noise is added to the kicked Harper map, trans
along the stochastic web is slowed down@28#.

In principle, a positive nonlinearity acts like a repulsiv
potential, but here the symmetry breaking effect is not
lated to the sign of the effective potential, as we see fr
Fig. 3, where it is shown that the sign of the nonlinearity h
a tiny effect on momentum spreading.

FIG. 4. Quantum transport (q54 two-parameter symmetry
group!, e50.7. The configuration space has been discretized w
212 points.
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If this view is correct, the effect must equally appear
the resonant crystal case, where a group of two-param
symmetries leads to ballistic transport@10#. Such an effect is
indeed evident even for short times~see Fig. 4!; after a char-
acteristic time scale, which shrinks as the nonlinearity
creases, the deviation from the kicked oscillator case is m
and more marked asu increases.

A priori, the situation is different when we consider th
oscillator outside thecrystal regime; to this end we analyze
the case in whiche51.4 andT5p/(A511). In this case the
kicked oscillator displays dynamical localization: the strikin
observation is that here the nonlinearity acts in an oppo
way, enhancing the quantum delocalization~see Fig. 5!. So,
when symmetries are not present in the quantum case,
linearity seems to play a completely different role. This is
least in qualitative agreement with what happens to
kicked rotator evolving under a nonlinear Schro¨dinger equa-
tion, or even when noise is superimposed on the quan
evolution@29#. We have checked that the same happens e
for higher values ofe, when the oscillator undergoes a del
calization transition.

In conclusion, we have analyzed how nonlinearity infl
ences a complex and physically relevant quantum syst
the kicked harmonic oscillator. We provide evidence that
least at moderate times, it opposes quantum diffusion w
transport is linked to symmetry properties of the line
Hamiltonian, while it may lead to diffusion enhanceme
when no symmetry breaking occurs.

This work was partially supported by the PRIN-200
project ‘‘Chaos and Localization in Classical and Quantu
Systems,’’ and the EU contract QTRANS network~Quantum
Transport on an Atomic Scale!. We thank E. Arimondo and J
H. Müller for bringing Ref.@19# to our attention.

h

FIG. 5. Quantum transport irrational case. Discretization is o
214 points. The inset shows the kicked oscillator case on a lon
time scale.
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